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20. ( Continued abstract) 

Initial stage of collapse In the case where the amount of mixing is uniform. It also 
compares well with a previous analytical theory in the case of a small amount of 
mixing where that theory is valid. 

fluid 
Most of the energy stored In the mixed region is given up to the surrounding 
in one Brunt-Vaisala period. 
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The case 1 is assumed to be uniformly mixed in that the density 
gradient in the interior is constant but is less tha-i that outside 
the region.  That is, the density profile is 

pC^ = 
(1) 

whore r is the radial distance from the center of the mixed region, 
The case II has the density profile 

(2) ttO. i-^{l-exf(-
rX^i 

and the case III has 

((.^= l-^l-expC-VcO] (3) 

The latter case in a sense is intermediate between the case 1 having 
a sharp edge and the case II having a very diffuse edge.  In the 
nonunlformly mixed cases II and III, the density perturbation is 
continuous and the mixing is complete onlv at the mixed region center. 
The amount of potential energy stored in the mixed region varies 
with the typ« of mixing and it is 

ii. ?€ «Xf.»*1^ 

in. PC .%e.^.4 
(4; 

In each case, the potential energy is defined as the work required 
to construct the mixed region from the linearly stratified surround- 
ings In a reversible manner. The cases II and III have the same a- 
mount of potential energy and that amount is one half that of a fully 
mixed region of the same 'radius'. 

The governing equations are the Navier-Stokes equations and 
in the absence of turbulence, the nonlinear effects are important 
but the viscous and diffusive ones are not for reasonable scales. 
Several finite difference methods of solving the nonlinear equations 
are available. Wessel [12] initially solved a problem of this tvpe 
in which the mixing was complete with a scheme similar to the one 
of Dugan et al [13],  The solutions obtained were in good agreement 
with the experiment of Wu [8] but the energy conservation properties 
of the code were uncertain.  Young and Hirt [14] solved the same 
problem but the method used appears to dissipate the available 
energy quite rapidly.  The modified MAC code used therein is stable 
only because of the presence of nonzero viscosity and the temporal 
history of the mixed region width does not compare well with the 
experiment. The method used by Dugan et al [13) has been shown to 
conserve energy quite well so Mt is a useful one to study the 
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energetics In the problem at hand.  It was also shown to predict 
results very similar to those of the experiment of Wu fS] for the 
fully mixed case.  The numerical method Is a modified form of that 
originally put forward by Williams [15] ; the formulation Is laid 
out In Dugan et al Cl3] and It has been modified as Indicated In the 
appendix to allow grid stretching and to better conserve energy. 

Uniform Mixing 

The case I of partial but uniform mixing Is considered first. 
The numerical solutions for the mixed region shape versus time are shown 
in Figure 2 for £ = .81 and .49 where 

6-M (5) 

■ndP- andpare defined in expression (1). The solution for € ■ .49 
shows little change from the fully mixed case in the early stage of 
motion.  However, eventually, all the shapes for even those values 
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of C approaching zero are lifferent fiom the fully mixed case.  The 
equilihrium positions of all fluid particles in the partially mixed 
region are above or below the mixed region centerline so that the 
shape never collapses to a line on the axis of the cylinder as it 
does in the fully mixed case.  The final equilibrium shape does not 
appear to be far from an ellipse in cases for which 6>«r. 

The width of the mixed region as a function of time is shown 
iii Figure 3 for several values of G . 
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In all   cases,   the  width   increases   to a  maximum and  exhibits  a 
slightly  underdamped  oscillation  to   its  equilibrium width. 

This   case  of  uniform,   partial  mixing   is   simple  p'.ough  to be 
amenable   to  analysis.     Hartman and Liwis   [7     have  obtained  an 
analytical   solution  for  this  case and,   to  the  validity  of  their 
solution,   the width of  the mixed  region  is  easily shown  to be 

aK>a * 2-€- 20-O JWUN-O 
-i 

(6) 
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This so ution is valid only when the amount of mixlng is small; that 
is  it is valid in the limit of £-. 1 .  However, it Is plotted in 
F gure 4 and it compares well with the numerical results for short 
time for all cases in which computations were made.  The nonlinear 

equation (6) 

, D, ... numerical 

100 

effects are clearly apparent in the mixed region widths in Figure 4 
in the cases in which the mixing is greater than 207. (€^.fi ) as the 
numerical and the linear solutions digress.  Even in the case of €= <5S- 
though, the solutions are not identical.  The nonlinear solutions '  ' 
outdistance the linear ones and they do not oscillate as quickly. 

The solution method of Bell and Dugan [llj in which the energy 
in the .nixed region is assumed to be conserved can be extended to 
apply to the case of partial mixing.  The governing equation that 
corresponds to equation (12) in Bell and Dupan [ll] is 

The solution of this equation for small time goes like 
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Of course this expression is never strictly valid since the mixed 
region never conserves its energy. On the other hand, it is not 
restricted to £ ar 1 .  Dugan et al [l3j have modified this analysis 
with the assumption that there is an equipartition of kinetic energy 
inside and outside the mixed region and have verified the resulting 
analytical prediction with the numerical solutions in the case of 
complete mixing. Making that assumption here, the governing eqaation 
is | 

2(n-or4)i «-U-a«*)* -u-u>«o 
This cannot be solved in closed form as in the fully mixed case but 
the solution valid for small time is 

alOj % ^i + ^ "V- OCMV) 6 (7) 

It is of interest to note that the short time behavior of the solution 
of Hartman and Lewis [7] (see equation (6) above) is identical to this 
expression.  The comparison between the numerical results and the 
asymptotic solution (7) above is shown in Figure 3. 

The energy content of the mixed region can be obtained 
approximately from the foregoing results.  Bell and Dugan [11] weie 
able to compute energiep under the assumption that the mixed region 
shape was elliptic.  Dugan et al [13] showed that the region shape 
was not elliptic after about one half of a Brunt-Vaisala period in 
the fully mixed case.  However, the energetics are integrals of the 
solution so they tend to be only weakly dependent upon the details 
of the mixed region shape.  The validity of the assumption of an 
elliptic shape was shown by Dugan et al [13] by computing the ener- 
getics numerically for times up to about one Brunt-Vaisala period. 
The results agreed reasonably well with those predicted by Bell and 
Dugan [11].  The mixed region shapes predicted numerically here and 
shown in Figure 2 are even more elliptic than in the fully mixed 
case so the assumption of an elliptvc shape for energetics computa- 
tions is a better one here. 

From the above discussion, it is apparent that the energy 
content of the mixed region can be computed from its width. For an 
elliptic shape in the uniform, partially mixed case, the potential 
energy is 

?E">seo^lci-£aa"«i)5i^a 
0 > (8a) 

valid to the Boussinesq approximation, and the kinetic energy is 

KC-V.^VU*«:**) (8b) 
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The values of a(0 and ^S^t can be obtained from Figure 3 to give 
the results shown In Figure 5.  The case of 6=.0/is Illustrated. 

A ,V numerical 
  equations (8) 
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The result is sufficient to conclude that, as in the fully mixed 
case,   the energy content of the mixed region is largely given up to 
the exterior fluid in one Brunt-Vaisala period.  This case of €~.Ql 
is quite representative of the other cases run so plots of those 
results are omitted. 

Figure 5 also shows the kinetic and potential energy content 
of the mixed region as predicted by equations (8a,8b) in which o.{±) 
and d<Vy-t are given by the theory of Hartman and Lewis [7], i.e. 
expression (6) here.  Although the result for the kinetic energy is 
somewhat different and the linear theory strictly is not valid in 
this case, the results predicted by the linear theory support the 
numerical prediction of the quick release of energy by the mixed 
region. 
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Gauss ian Mixing 

The density perturbation of Gaussian form jn case 11 is quite 
diifuse compared with the case I.  Analyses of mixed region shapes 
and widths are not very meaningful since the edge of the mixed region 
is not clearly defined.  Nevertheless, approximations to shapes can be 
determined if one is content to follow fluid particles that have some 

initially given positions. 

The shape of a dense mass of particles that is initially in 
a circle having the radius C0 is plotted with time in Figure 7. 
Gomparod with the previous case, there is an interesting difference 

TIME 1.0 

0.5 1.5 

TIMK IN HIUNT-V.-VISALA I'KRIODS 

Figure  7 

in  the   final   equilibrium positions  of  the particles.    The  shape  is  not 
elliptic  at  all   but   it  shows  a  distinct  peak near  the  original  vertical 
center line.     This  equilibrium shape   is  explained  by  the   type  of density 
perturbation.     Since  the amount  of mixing  goes   to  zero  smoothly  near 
the  edge  ot   the  mixed region,   the   final  equilibrium positions  of  the 
particles  near  the  top and  the  bottom of  the   region are not  very  far 
from the   initial  positions.     Thus,  although  the particles  near   the 
center move  appreciably because  of  the  greater  amount of  mixing  there, 
those  near   the  upper and  lower  edge move  only  slightly. 

The  energy content  of   the  mixed  region   is  not  clearly  defined 
since  there   is   no   'edge'   to  the  mixed  region  so no computations  are 

made. 

Modified Gaussian Mixing 

As in the previous case, numerical results have been obtained 
for the case 111.  The particle distribution that was initially in the 
region r< <X    is displayed versus time in Figure 8.  This initial density 
perturbatTion0 is closer to the case 1 having a sharp edge but the small 
amount of mixing near the edge in this case continues to give final 
equilibrium shapes with a peak near the vertical centerline. 
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Finally, one more observation about the final width of the 
mixed legion is useful.  The potential energy for a mixed region of 
elliptic shape is given by expression (8a). Since, in the final 
stage of collapse, the potential energy is all given up to the 
exterior fluid, this expression implies that the final equilibrium 
ha If-width of the mixed region is 

a = a  c 
-i 

(9) 

This  expression  is  in good agreement with  the numerical  results  as 
shown   in Figure  6. 
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Figure  6 

The   result  is  compared with    that   of Hartman and Lewis  [7] which 
implies  that 

a« aAi-e) (10) 

and which,  evidently,   is  valid only  in the  limit of very small  mixing. 
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Conelusions 
Figure 8 

The final equilibrium shape of partially mixed regions is shown 
to depend crucially upon the initial density perturbation that defines 
the mixed region.  The equilibrium shapes obtained for uniformly mixed 
regions are elliptic in cross section but the shapes obtained in cases 
of nonuniformly mixed regions show a distinct peak near the vertical 
centerline. 

The case of uniform, partial mixing is less realistic than the 
nonuniformly mixed cases but it lends itself to energetics computations. 
In this case, for any degree of mixing, the energy content of the mixed 
region is practically all given up to the exterior fluid by the time of 
one Brunt-Vaisala period after the initiation of collapse.  There is 
little reason to believe that rhis result would be any different for 
other types of mixing.  Also, the final equilibrium width of the mixed 
region is close to the width predicted by a simple theory; that is 

•l-*oo 0 0  »• i 
where K40is the Brunt-Vaisala frequency outside tl;e region and Kl • is 
the initial uniform Brunt-Vaisala frequency inside the region. 

The temporal dependence of the mixed region width in the case 
of uniform, partial mixing is compared with analytic results from an 
integral energetics model and a linearized differential model.  Non- 
linear effects are shown to be important in mixed regions that are 
mixed as much as 207. or more; that is, when KiTii^ <■ ,ß • 
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Appendix I 

The purpose of this section is to give details on the 
additional numerical features introduced by the stretching of the 
mesh employed in Dugan et al [13] in both the x- and 7- directions. 
The reader is referred to section 2 of the above reference to obtain 
a complete description of the conservation, accuracy and stability 
of the constant mesh scheme; a discussion is also contained in 
Williams [15" and Piacsek and Williams [16". 

Figure 9 illustrates the stretched mesh in one direction and 
the arrangement of the variables on their respective grid points. 
A discussion of the g^i.eral approach to conservation on stretched 

»  o  ■    O 

V 
"i-V; 

1*1 

"!♦*, 

Figure 9 

meshes is given by Bryan [17J and will not be repeated here.  However, 
we will illustrate below the essential ideas by applying the scheme 
to the one-dimensional transport of momentum and temperature.  For 
inviscid flows, the equations 

(1.1) 

VT       vr 
— ■ - a — 

(1.2) 

will   serve  adequately   to demonstrate  the  technique.     Using Figure  9 
and  the   quadratical ly  conserving scheme   of Piacsek and WiKiams   [16], 
we may write 

(1.3) 

^tJc " AX. 

\U 
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Note from Figure 9 that 6*.^,, and ÄK- refer to elements of different 
mesh sequences, one 'centered^ on U^y  and the other on T- 
respectively.  Upon multiplying expression (1.3) by AK-.v  and 
expression (1.4) by 6^and summing over i , the sums encountered in 
Dugan et al [13 are produced and these were shown to be conserved 
How.ver. whereas the T-boxes are actually centered on T, , the u-boxes 
are centered on U^,^,   resulting in a loss of second order accuracy 
in the truncation error unless the mesh is stretched in certain 
special ways.  The current mesh stretching has only first order 
accuracy, and is given by 

vu '-xHft *i) (I.5) 
In the calculations in this report-, the mesh was stretched such that 
the final grid length in the horizontal was eighteen times the 
initial length, and the total box size was eight radii wide and 
four radii high.  The stretching enabled a reduction in the number 
Of horizontal mesh points by a factor of five. 

In addition to the changes outlined above, the computations 
performed in solving the Poisson equation in Dugan et al [13] are 
now done in double precision so that roundoff errors are minimized. 
Ihis gives an order of magnitude improvement in the conservation of 
total energy in the computation box; the change in total energy in 
fourteen Brunt-Vaisala periods of computation is less than 57 
versus somewhat less than 5% in single precision arithmetic. 
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